Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Biol (Weinh) ; 7(7): e2300054, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37132099

RESUMO

CPNE1 is a calcium-dependent, phospholipid-binding protein that is ubiquitously expressed in various tissues and organs. This study investigates the expression and localization of CPNE1 in tooth germ development and the role of CPNE1 in odontoblastic differentiation. In rat tooth germs, CPNE1 is expressed in the odontoblasts and ameloblasts since the late bell stage. The depletion of CPNE1 in the stem cells from apical papilla (SCAPs) clearly inhibits the expression of odontoblastic-related genes and the formation of mineralized nodules during differentiation, while CPNE1 overexpression promotes this process. In addition, CPNE1 overexpression increases AKT phosphorylation during the odontoblastic differentiation of SCAPs. Furthermore, treatment with AKT inhibitor (MK2206) reduces the expression of odontoblastic-related genes in CPNE1 over-expressed SCAPs, and Alizarin Red staining shows reduced mineralization. These results suggest that CPNE1 plays a role in the tooth germ development as well as the odontblastic differentiation of SCAPs in vitro that is related to the AKT signaling pathway.


Assuntos
Odontogênese , Proteínas Proto-Oncogênicas c-akt , Células-Tronco , Animais , Ratos , Diferenciação Celular/genética , Odontogênese/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo
2.
Odontology ; 111(1): 57-67, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35739380

RESUMO

NG2+ pericytes, as the possible precursor cells of mesenchymal stem cells (MSCs), have drawn attention due to their ability to differentiate into odontoblasts. Cav1.2 is involved in the differentiation process of stem cells, but its role in the differentiation of NG2+ pericytes is not clear. The aim of the present study was to examine the role of Cav1.2 in the differentiation of NG2+ pericytes into odontoblasts. NG2+ pericytes were obtained from human dental pulp cells by magnetic-activated cell sorting. During the odontogenic differentiation of NG2+ pericytes, the effects of the Cav1.2 inhibitors, nimodipine and Cav1.2 knockdown shRNA, were analyzed by real-time polymerase chain reaction and alizarin red staining. NG2CreERT2/Rosa26-GFP lineage-tracing mice were established to further investigate the roles of NG2+ pericytes and Cav1.2 in incisor self-repair after injury in vivo. At 10 min, 1 day, and 3 days after pulp injuries in transgenic mice, NG2-GFP+ and Cav1.2 immunofluorescence co-staining was performed on the incisors. Nimodipine treatment and Cav1.2 knockdown showed similar inhibition of calcium nodule formation and mRNA levels of osteogenic markers (DSPP, DMP1, and Runx2, p < 0.05). NG2+ pericytes migrated from their inherent perivascular location to the odontoblast layers after pulp injury. Cav1.2 showed a similar response pattern as NG2+ pericytes and gradually returned to normal levels. In addition, many co-stained areas of Cav1.2 and NG2+ pericytes, both near the perivascular and odontoblast layers, were observed. These results indicate that Cav1.2 played a vital role in the odontogenic differentiation of NG2+ pericytes, and that it might be closely linked to the NG2+ pericytes-mediated repair of dental pulp injury in vivo.


Assuntos
Proteínas da Matriz Extracelular , Pericitos , Camundongos , Humanos , Animais , Pericitos/química , Nimodipina , Polpa Dentária , Diferenciação Celular , Odontoblastos , Células Cultivadas
3.
Front Bioeng Biotechnol ; 10: 890882, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35800329

RESUMO

The transcriptional regulation of induced pluripotent stem cells (iPSCs) holds promise for their directed differentiation into ameloblasts, which are usually lost after tooth eruption. Ameloblast differentiation is regulated by multiple signaling molecules, including bone morphogenetic proteins (BMPs). Epiprofin (Epfn), a transcription factor, is expressed in the dental epithelium, and epithelial Epfn overexpression results in ectopic ameloblast differentiation and enamel formation in mouse incisor, a striking phenotype resembling that of mice with deletion of follistatin (a BMP inhibitor). However, it remains unknown whether and how Epfn transcriptional activation promotes ameloblast induction from mouse iPSCs. Here, we generated doxycycline-inducible Epfn-expressing mouse iPSCs (Epfn-iPSCs). Ameloblasts, which are characterized by positive staining for keratin 14 and amelogenin and alizarin red S staining, were successfully derived from Epfn-iPSCs based on a stage-specific induction protocol, which involved the induction of the surface ectoderm, dental epithelial cells, and ameloblasts at stages 1, 2, and 3, respectively. Epfn activation by doxycycline at stages 2 and/or 3 decreased cell proliferation and promoted ameloblast differentiation, along with the upregulation of p-Smad1/5/8, a key regulator of the BMP-Smad signaling pathway. Gene analysis of the BMP-Smad signaling pathway-associated molecules revealed that Epfn activation decreased follistatin expression at stage 2, but increased BMP2/4/7 expression at stage 3. Perturbations in the ameloblast differentiation process were observed when the BMP-Smad signaling pathway was inhibited by a BMP receptor inhibitor (LDN-193189). Simultaneous LDN-193189 treatment and Epfn activation largely reversed the perturbations in ameloblast induction, with partial recovery of p-Smad1/5/8 expression, suggesting that Epfn activation promotes ameloblast induction from mouse iPSCs partially by upregulating BMP-Smad activity. These results reveal the potential regulatory networks between Epfn and the BMP-Smad pathway and suggest that Epfn is a promising target for inducing the differentiation of ameloblasts, which can be used in enamel and tooth regeneration.

4.
Connect Tissue Res ; 62(3): 277-286, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-31769319

RESUMO

Purpose: Schwann cells (SCs) are the main source of odontoblasts. They can migrate to the sites of injury and differentiate into odontoblasts during tooth development and regeneration. However, the molecular mechanisms by which SCs repair dental damage remain to be fully elucidated. In addition, exosomes play a crucial role in regulating cell-cell interaction. Hence, we aim to explore the biological function of exosomes secreted by human dental pulp stem cells (hDPSCs) and their effect on SCs.Materials and Methods: Exosomes were extracted from the supernatant of hDPSCs (exo) and LPS- preconditioned hDPSCs (LPS-exo), respectively. Following the evaluation of specific surface proteins and exosomes size and morphology, SCs were treated with exo and LPS-exo, and we examined SCs proliferation, migration, and odontogenic differentiation in vitro.Results: Exosomes had the capacity to regulate SCs proliferation and migration. Furthermore, exosomes from both groups stimulated SCs to produce dentin sialoprotein and undergo mineralization; however, LPS-exo had a better ability to modulate SCs migration and odontogenic differentiation compared with exo.Conclusions: Exosomes from hDPSCs, especially from LPS- preconditioned hDPSCs, can promote the proliferation, migration and odontogenic differentiation of SCs. LPS might change the hDPSCs' intercellular signals, which might mediate the odontogenic differentiation of SCs, transmitting in the manner of "exosomes".


Assuntos
Exossomos , Lipopolissacarídeos , Diferenciação Celular , Movimento Celular , Proliferação de Células , Polpa Dentária , Humanos , Lipopolissacarídeos/farmacologia , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...